Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors

نویسندگان

  • Patrick Breheny
  • Jian Huang
چکیده

Penalized regression is an attractive framework for variable selection problems. Often, variables possess a grouping structure, and the relevant selection problem is that of selecting groups, not individual variables. The group lasso has been proposed as a way of extending the ideas of the lasso to the problem of group selection. Nonconvex penalties such as SCAD and MCP have been proposed and shown to have several advantages over the lasso; these penalties may also be extended to the group selection problem, giving rise to group SCAD and group MCP methods. Here, we describe algorithms for fitting these models stably and efficiently. In addition, we present simulation results and real data examples comparing and contrasting the statistical properties of these methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Regularized methods for high-dimensional and bi-level variable selection

Many traditional approaches to statistical analysis cease to be useful when the number of variables is large in comparison with the sample size. Penalized regression methods have proved to be an attractive approach, both theoretically and empirically, for dealing with these problems. This thesis focuses on the development of penalized regression methods for high-dimensional variable selection. ...

متن کامل

Strong rules for nonconvex penalties and their implications for efficient algorithms in high-dimensional regression

We consider approaches for improving the efficiency of algorithms for fitting nonconvex penalized regression models such as SCAD and MCP in high dimensions. In particular, we develop rules for discarding variables during cyclic coordinate descent. This dimension reduction leads to a substantial improvement in the speed of these algorithms for high-dimensional problems. The rules we propose here...

متن کامل

Majorization minimization by coordinate descent for concave penalized generalized linear models

Recent studies have demonstrated theoretical attractiveness of a class of concave penalties in variable selection, including the smoothly clipped absolute deviation and minimax concave penalties. The computation of the concave penalized solutions in high-dimensional models, however, is a difficult task. We propose a majorization minimization by coordinate descent (MMCD) algorithm for computing ...

متن کامل

An Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression

We propose and study a new iterative coordinate descent algorithm (QICD) for solving nonconvex penalized quantile regression in high dimension. By permitting different subsets of covariates to be relevant for modeling the response variable at different quantiles, nonconvex penalized quantile regression provides a flexible approach for modeling high-dimensional data with heterogeneity. Although ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and computing

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2015